Local Polynomial Regression
نویسنده
چکیده
منابع مشابه
THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملLocal composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression
Local polynomial regression is a useful non-parametric regression tool to explore fine data structures and has been widely used in practice. We propose a new non-parametric regression technique called local composite quantile regression smoothing to improve local polynomial regression further. Sampling properties of the estimation procedure proposed are studied. We derive the asymptotic bias, v...
متن کاملLocal polynomial regression on unknown manifolds
We reveal the phenomenon that ”naive” multivariate local polynomial regression can adapt to local smooth lower dimensional structure in the sense that it achieves the optimal convergence rate for nonparametric estimation of regression functions belonging to a Sobolev space when the predictor variables live on or close to a lower dimensional manifold.
متن کاملMultivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution∗
Masry (1996b) provides estimation bias and variance expression for a general local polynomial kernel estimator in a general multivariate regression framework. Under smoother conditions on the unknown regression and by including more refined approximation terms than that in Masry (1996b), we extend the result of Masry (1996b) to obtain explicit leading bias terms for the whole vector of the loca...
متن کاملWeighted Local Polynomial Regression, Weighted Additive Models and Local Scoring
This article describes the asymptotic properties of local polynomial regression estimators for univariate and additive models when observation weights are included. The implications of these ndings are discussed for local scoring estimators, a widely used class of estimators for generalized additive models described in Hastie and Tibshirani (1990).
متن کاملLocal Polynomial Regression and Its Applicationsin
Nonparametric regression estimates a conditional expectation of a response given a predictor variable without requiring parametric assumptions about this conditional expectation. There are many methods of nonparametric regression including kernel estimation, smoothing splines, regression splines, and orthogonal series. Local regression ts parametric models locally by using kernel weights. Local...
متن کامل